Human-Centred Design Framework

Year level: Year 9

Authors: Emilie Nachtigall, Ed Nikolaidis, Felicity McNamara, David Alger, John Perrin

Description: Use Human-Centred Design to address social issues relevant to students – for example, the issue of healthy living/access to fresh food. This would include Public health, Social work, kitchen gardens, food technology, biology, economics, STEM, sustainability, etc.

Timeline: One semester, on average 100 minutes per week.

- Week 1 – Research (background)
- Week 2 – Bring in expert & establish target goals & constraints
- Week 3 – Research existing products
- Week 4 – Design
- Week 5 - Design (Use other teachers as experts – students can ask questions
- Week 6 – Final Design + CAD
- Week 7 – Prototyping (Bring in cross-curricular info/teachers)
- Week 8 – Prototyping
- Week 9 – Production
- Week 10 – Production
- Week 11 – production
- Week 12 – production
- Week 13 – production
- Week 14 - Evaluation

Resources Required:

- Social-issues experts (Engineers Without Borders, etc)
- Collaborative STEM team (with dedicated time to work on it)
- Materials within constraints

Teacher & Timetabling Approach:

- Team teaching, interdisciplinary Approach (Food Tech, D&T, Science [Biology], Economics, statistics/public health, ecology/sustainability

Curriculum Benchmarking:

Design & Technology Levels 9 & 10

1. Food & Fibre Production
 Investigate & make judgements on the ethical and sustainable production and marketing of feed & fibre

2. Food Specialisations
 Investigate & make judgements on how the principles of food safety, preservation, preparation, presentation and sensory perceptions influence the creation of food solutions for healthy eating

3. Engineering Principles & Systems
Investigate and make judgements on how the characteristics and properties of materials are combined with force, motion and energy to create engineered solutions

4. **Creating Designed solutions**
 - **Investigating** – Critique needs or opportunities to develop design briefs and investigate and select an increasingly sophisticated range of materials, systems, components, tools and equipment to develop design ideas
 - **Generating** – Apply design thinking, creativity, innovation and enterprise skills to develop, modify and communicate design ideas of increasing sophistication
 - **Producing** – Work flexibly to safety test, select, justify and use appropriate technologies and processes to make designed solutions
 - **Evaluating** – Evaluate design ideas, processes and solutions against comprehensive criteria for success recognising the need for sustainability
 - **Planning & Managing** – Develop project plans to plan and manage projects individually and collaboratively taking into consideration time, cost, risk and production processes

Science Levels 9 & 10

1. **Biological Sciences**
 - Ecosystems consist of communities of interdependent organisms and abiotic components of the environment; matter and energy flow through these systems

2. **Earth & Space Sciences**
 - Global systems, including the carbon cycle, rely on interactions involving the atmosphere, biosphere, hydrosphere and lithosphere

3. **Physical Sciences**
 - Energy flow in Earth’s atmosphere can be explained by the process of heat transfer

Mathematics Level 9

Level 2

1. **Statistics & Probability (Using Community Health Statistics)**
 - List all outcomes for two-step chance experiments, both with and without replacement using tree diagrams or arrays. Assign probabilities to outcomes and determine probabilities for events
 - Calculate relative frequencies from given or collected data to estimate probabilities of events involving ‘and’ or ‘or.
 - Investigate reports of surveys in digital media and elsewhere for information on how data were obtained and to estimate population means and medians

2. **Data Representations and Interpretations**
 - Identify everyday questions and issues involving at least one numerical and at least one categorical variable, and collect data directly from secondary sources
 - Construct back-to-back stem and leaf plots and histograms and describe data, using terms including ‘skewed’, ‘symmetric’ and ‘bimodal’
 - Compare data displays using mean, median and range to describe and interpret numerical data sets in terms of location (centre) and spread

23rd May 2016